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Abstract—A general methodology to derive analytically the
statistical properties of Stochastic Computing Finite-State Ma-
chines (SFSM) is introduced. The SFSMs, expressed as Moore
ones, are modeled using Markov Chains, enabling the derivation
in closed form of their output sequences’ statistical properties,
including their expected value, their auto- & cross-correlation,
their auto- & cross-covariance, their variance and standard
deviation as well as their mean squared error. A MC over-
flow/underflow probability model accompanies the methodology,
allowing to calculate analytically the expected number of steps
before overflows/underflows, setting the guidelines to select the
register’s size that reduces erroneous bits originating from them.
In the proposed methodology both the input sequence length and
the number of the SFSMs’ states are considered as parameters,
accelerating the overall design procedure as the necessity for
multiple time-consuming numerical simulations is eliminated.
The proposed methodology’s accurate modeling capabilities are
demonstrated with its application in two SFSMs selected from the
SC literature, while comparisons with the numerical experiments
justify its correctness.

Index Terms—Stochastic Computing, Stochastic FSMs,
Markov Chain Modeling

I. INTRODUCTION

Arithmetic operations on binary stochastic sequences is the
basis of the unconventional technique known as Stochastic
Computing (SC) [1]. Its encoding and processing of infor-
mation deviates from the classical binary arithmetic one; SC
processes binary-valued numbers in the form of sequences
of logic 1s and 0s [1], [2]. Hence, SC’s bit-serial processing
allows for operations to be realized simply using standard logic
gates and cells [2]–[7], while its probabilistic nature makes it
tolerant to soft-errors originating from noisy sources [2], [3].

SC’s advantages favor applications requiring massive par-
allelism and hardware-friendly realizations. Neural Networks
[8]–[15] and Digital Image Processing [16]–[18] are the two
primary benefited fields of application due to the necessity
of non-linear elements in their Digital Signal Processing
(DSP) cores, besides the fundamental arithmetic operations
[8], [10], [16]. These non-linear elements are highly-complex
functions and in contrast to the standard binary arithmetic,
their realization is done efficiently in SC with the use of
Stochastic Finite-State Machines (SFSMs) [10], [12], [17],
[19], [20].

The concept of using SFSMs to approximate non-linear
functions such as the tanh, the exponential etc. was introduced

in [10]. For the approximations to be feasible, the SFSMs
should satisfy the following conditions according to [10]: 1)
they have a finite number of ordered states with the first
and last one being saturating, meaning that they cannot be
exceeded; 2) the transitions within their states are driven by
input sequences, with stochastic properties and finite length;
and 3) each state communicates with the rest ones. These
conditions allow for the operation of a SFSM to be described
as an ergodic Markov Chain (MC), enabling the synthesis
of functions based on simple logical operations between the
states’ probabilities [10].

Despite the SFSMs’ multiple advantages, they also come
with their own weaknesses [10]. In [10], it is mentioned that
SFSMs introduce correlations among the bits of the output
sequence, which is reasonable given the memory elements
required to implement the state machines [10]. However, the
calculation of the output’s auto-correlation is estimated with
numerical experiments [10]. This is also the case for the
SFSM’s output that approximates the given function, in which,
two important factors contribute as well: 1) the number of
states and 2) the input sequence length.

The SFSM analysis of [10], is further extended in [17].
Specifically, in [17], MCs are used to formally prove the
principle of operation of several SC-based non-linear func-
tions, including the exponential, the tanh etc. [17]. A fault-
tolerance analysis with respect to bit-flips is also considered
in [17]. Nevertheless, the SFSM’s statistical properties are not
investigated.

Stochastic sequence correlation is often caused at the input
as discussed in [2], [21]–[23]; the binary-to-stochastic number
converters share a common random number source. This
allows for certain arithmetic operations to be realized more
efficiently as shown in [2], [21]–[23], at the cost of increased
correlation between the input and the output sequences. The
use of a de-correlator unit composed of D Flip-Flops to reduce
correlations is mentioned in [22], but, the analysis is supported
by numerical experiments.

With respect to the SFSM’s output auto-correlation, it
is only investigated in [24]. Its calculation, however, faces
modeling difficulties when joint distributions are required and
thus it is limited to approximations [24]. The variance in multi-
stage SC circuits is analyzed in [25]. Yet, it is approached
from a gate-level perspective, without further investigation in
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SFSMs.
Motivated by the needs for an in-depth understanding of

the SFSMs’ statistical properties, in this work we introduce
a mathematical framework for their detailed analysis based
on MCs. It is a general methodology, in the sense that it
can be applied to any SFSM modeled as a MC. The major
contribution of this manuscript is the analytical calculation
using closed-formed expressions of the following quantities
in a SFSM:

• The expected value of the output and the output’s mean.
• The auto-correlation and auto-covariance of the output.
• The cross-correlation and cross-covariance of the output

with the inputs.
• The variance & the standard deviation of the output’s

mean.
• The mean squared error of the output’s mean.
• The probability of overflows and underflows in the satu-

rating states.
• The expected number of steps before overflows and

underflows, used to select the number of states of the
SFSM balancing the computational accuracy hardware
trade-off.

Once applied to a SFSM, the proposed framework can be an
effective tool to: 1) evaluate the correctness of the SFSM’s
output when approximating a given function; 2) measure the
correlation among the bits in the output sequence and to what
extent it affects further operations (e.g. multiplication) of the
output with itself and the inputs; 3) calculate the expected
accuracy of the SFSM’s output and to compare it with the
experimental numerical results; and 4) select the register’s size
that balances computational accuracy compared to hardware
resources. A further advantage of the proposed framework is
that it considers as parameters both the input sequence length
and the number of states, which is of utter importance for the
modeling of SFSMs; it eliminates the necessity for multiple
time-consuming parametric simulations to derive the statistical
properties and the register’s size, thereby accelerating their
design & modeling procedure.

We organize the remainder of the proposed work as follows.
In Section II we provide the essential notation of the stochas-
tic numbers, as well as explain the modeling procedure of
SFSMs using Markov Chains. In Section III, we introduce the
proposed framework based on MCs and explain in-detail the
methodology to derive the statistical properties of SFSMs. In
Section IV, we investigate the overflow/underflow occurrence
based on the number of the SFSM’s states and provide
guidelines to select the number of states. In Section V, we
use the proposed framework to model in detail the statistical
properties of two SFSMs selected from the SC literature and
we showcase its correctness by comparing its results with
those obtained from numerical experiments. Finally, in Section
VI we conclude the introduced framework.

II. STOCHASTIC COMPUTING FINITE-STATE MACHINES

In this section we provide the basic notation & definitions
used for the stochastic numbers and then we proceed with the
modeling of SFSMs as Markov Chains.

A. Stochastic Number Properties

The standard way to encode binary numbers into stochastic
ones is by using a stochastic number generator (SNG). The
SNG utilizes a pseudo-random number generator, which pro-
duces a sequence of independent and identically distributed
(i.i.d.) pseudo-random numbers in [0, 1] and compares them
sequentially to the input c-bit binary word b ∈ [0, 1] [26].
The comparator outputs a logic 1 if the binary word is larger
and 0 otherwise. The bit generation process is completed after
N = 2c clock cycles setting the length of the generated
stochastic sequence.

The generated N -bit sequence Xn, n = 1, 2, . . . , N , where
n is the time (clock cycle), is such that X ≜ Pr(Xn = 1) in
the range [0, 1], known as unipolar format, with realization

X̃N =
1

N
(X1 +X2 + · · ·+XN ) . (1)

Negative numbers are also supported in SC, with their repre-
sentation known as bipolar format. The encoding from unipo-
lar to bipolar, is done using the transformation X 7→ 2X − 1,
expanding the range of the stochastic number to [−1, 1].

B. Operation of a Stochastic Computing Processing Block

Fig. 1. A multi-input single-output stochastic computing processing block.

From a system-level perspective, a SC processing block
(SCPB) is represented by the abstract model of Fig. 1. Typi-
cally in SC, it can describe the operation of

1) a combinational logic expression,
2) a sequential logic expression,
3) a higher-level architecture, containing both of the previ-

ous processing elements.
Therefore, a SCPB can have many stochastic input sequences
{Xj

n}, j = 1, . . . , k, each one with probability Xj =
Pr(X

j
n = 1), while {Zn} is the output sequence.

The realization of sequential logic circuits and high-level
architectures requires memory elements. This means that the
SCPB must have a set of internal states TR ≜ {0, 1, 2, ...,W−
1}, where W is the number of states. When counters are used
in SC, it is important to note that they may saturate. Assume
for example that the states are linearly ordered, i.e. 0 < 1 <
2 <, . . . , < W − 1 and the goal of the SCPB is to capture an
operation of the form Tn = Tn−1+f(X1

n, . . . , X
k
n), where Tn

is the current state. State Tn is constrained in TR, i.e., within
0 and W − 1 and what is (typically) realized by the SCPB is
the state update process

Tn = max
{
min

{
Tn−1 + f(X1

n, . . . , X
k
n),W−1

}
, 0
}
. (2)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3211487

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



3

To provide with better insight on the state update, we
proceed with the following example. Assume 3 i.i.d. input
sequences {X1

n}, {X2
n}, {X3

n} and the function

f(X1
n, X

2
n, X

3
n) = AND

(
X1

n, X
2
n, X

3
n

)
−AND

(
X1

n, X
2
n, X

3
n

)
where Xj

n = 1 − Xj
n. Considering the above, Tn increases

its value by 1-bit when and only when all three inputs are
simultaneously 1, i.e. X1

n = X2
n = X3

n = 1, decreases its
value by 1-bit when X1

n = X2
n = X3

n = 0 and maintains its
previous value otherwise, i.e. Tn = Tn−1.

The purpose of the counter’s register in the previous exam-
ple, is to remember the cases where all three inputs are 1, so
as to ”balance” them with the cases where all three inputs are
0.

With respect to the output, Zn is determined according to
the SCPB’s operation. In the simplest case of combinational
logic, Zn is straightforward. However, in the case where
the SCPB describes a sequential logic circuit or a higher-
level architecture, then FSMs are utilized. Therefore, the
SCPB’s operation can be described using a stochastic FSM
(SFSM) and consequently be modeled as a Markov Chain
(MC), allowing for the exploration of its long-term stochastic
dynamics and the calculation of its statistical properties.

C. Markov Chain Modeling of a Stochastic FSM

A SFSM expresses a behavior that falls into the category
of either a Mealy or a Moore FSM. The former implies that
the current output Zn is a function of the inputs and the state,
whereas the latter implies that Zn is determined solely by the
current state. Although the conversion from one FSM behavior
to another is a feasible and standard task [27], as shown with
the example in Fig. 2, here we consider only Moore-based
FSMs. This is because relating the current state to the output
only, makes the mathematical modeling, analysis and design
of SFSMs using MCs more tractable.

Fig. 2. Conversion example of a stochastic Mealy (left) to Moore (right) FSM.
State D1 in the Mealy is separated into two states in the Moore Da

1 , D
b
1

outputting 1 and 0 respectively. In this example, transition probabilities
C1, C2, C3, are arbitrary selected, but, determined by two stochastic input
sequences {X1

n},{X2
n}.

A SFSM can be described by a MC model, with an example
shown in Fig. 3. The MC of Fig. 3 is used as reference to
explain the modeling procedure of a SFSM, but, note that any
MC can be used. The MC of Fig. 3 has a total of M states
and its current state, Sn, takes values within the set

S ≜ {0, 1, 2, . . . ,M − 2,M − 1}. (3)

Therefore, the MC’s current state Sn, is described as a function
of the previous state and the inputs, i.e. Sn = F (Sn−1, X

j
n)

and thus the output is a function of the state, i.e. Zn = G(Sn).
Considering that a counter is used as memory element,

there is a difference between the counter’s total number of
states, W , and the MC’s number of states, M ; the MC has
at least as many states as the counter has, i.e. M ≥ W ,
meaning that the mapping from the MC states to those of
the counter is surjective, but, not necessarily injective. This
can be based on many factors, such as the conversion from a
Mealy SFSM behavior to a Moore one, the counter’s register
type, for instance a shift-register, the SCPB’s number of inputs
etc.

  

    

Fig. 3. Example of a Markov Chain model describing the operation of a
stochastic FSM. Transition probabilities Aj are defined by a boolean function
and determine the state’s transition (see example below). The output Zn is
related to the current state, expressing the FSM’s behavior as a Moore one,
outputting 0 or 1.

Proceeding to the MC’s behavior and assuming that tran-
sitions occur from a state σi to any other one σj , with
σi, σj ∈ S, then the (M ×M) transition probability matrix is
defined as H ≜ [Pr(Sn = σj |Sn−1 = σi)]. Considering that
the transitions from one state σi to another σj are determined
by the inputs X1

n, X
2
n, . . . , X

k
n of the SCPB, then the transition

probabilities Aj , j = 1, . . . , l could be any boolean function,
such as AND, OR, XOR etc, as

Aj = Pr

(
fj(X

1
n, X

2
n, . . . , X

k
n)
)
. (4)

To further explain how Aj are determined, consider the
following example. Suppose that the MC’s state Sn−1 at time
index n− 1, transitions as follows

• If X1
n = X2

n = 1 and Sn−1 > 0, then Sn = Sn−1 + 1,
• If X1

n = X2
n = 0 and Sn−1 > 0, then Sn = Sn−1 − 1,

• If XOR(X1
n, X

2
n) = 1 and Sn−1 > 0, then Sn = Sn−1,

• If OR(X1
n, X

2
n)=1 and Sn−1 = 0, then Sn = Sn−1 + 2,

• If OR(X1
n, X

2
n)=1 and Sn−1 = M−1, then Sn = Sn−1.

Based on the above, the transition probabilities can be
described as A1 = Pr(AND(X1

n, X
2
n) = 1), A2 =

Pr(NOR(X1
n, X

2
n) = 1) and A3 = Pr(XOR(X1

n, X
2
n) = 1).

They can be used along with the MC model of Fig. 3 and the
state ordering (0, 1, . . . ,M−1), to express H as in (5), where
A4 = A1 +A3.

H =



A2 0 A4 . . . . . . 0
A2 A3 A1 0 . . . 0
0 A2 A3 A1 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 A2 A3 A1

0 . . . . . . 0 A2 A4


. (5)
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Note that since H is stochastic, it satisfies
∑M

j=1 Hi,j = 1,
where (i, j) represents the i-th row and j-th column of the
matrix H . The probability distribution vector of state Sn, is
defined as

pTn ≜


Pr(Sn = 0)
Pr(Sn = 1)
Pr(Sn = 2)

...
Pr(Sn = M−1)

 ∈ [0, 1]M (6)

and for n = 1, 2, . . . , N steps it is derived as

pn = p0H
n ∈ [0, 1]M . (7)

Here, p0 denotes the initial distribution vector representing the
starting state of the MC, S0, which can take any value within
S. It is expressed as

p0 = ei ∈ [0, 1]M , (8)

where ei = [0, . . . , 1, . . . , 0] ∈ RM is the i-th standard vector.
Before we proceed with the analysis in the next section,

it is important to note that we consider only MCs that are
irreducible; they have the property that starting from any state
σi, it is possible to transition to any other one σj , regardless
of the number of transition steps. Such MCs have a unique
stationary distribution pF [28], i.e. pn → pF as n → ∞,
where also pFH = pF

III. STATISTICAL MODELING OF STOCHASTIC FSMS

In this section, we use the MC modeling to derive analyti-
cally the statistical properties of SFSMs.

A. Expected Value

To derive the first-moment statistics, one can observe first
from the MC model of Fig. 3, that Zn is related to the state
only; each state outputs either 0 or 1, based on the SFSM’s
operation. It is convenient therefore, to partition S into two
subsets S1 and S0, such that S = S1 ∪ S0, S1 ∩ S0 = {},
where Sn ∈ S1 ⇒ Zn = 1 and Sn ∈ S0 ⇒ Zn = 0.

Considering the above and also the equations describing the
MC (5), (7) and (8), the expected value of the instantaneous
output Zn is calculated as

E[Zn] = Pr(Zn = 1) = Pr (Sn ∈ S1) = p0H
nqT , (9)

with q ∈ RM defined as

q ≜
∑
i∈S1

ei, (10)

where q represents the set of states outputting 1. To give a
better intuition behind the calculation of (9) and the definition
of q in (10), suppose that the states 0 and 1 are the only
ones outputting 1. Then S is partitioned into S1 = {0, 1} and
S0 = {2, . . . ,M − 1} and thus q = [1, 1, 0, . . . , 0].

According to (1), the average of the N -bit output sequence
is

Z̃N =
1

N

(
Z1 + Z2 + · · ·+ ZN

)
, (11)

and using (9) its expected value is calculated as

E[Z̃N ] =
1

N

N∑
n=1

E[Zn] =
1

N
p0

(
N∑

n=1

Hn

)
qT . (12)

Both E[Zn] and E[Z̃N ] are also essential in the calculation of
the second-moment statistics in the following subsection.

B. Auto-Correlation & Auto-Covariance

The auto-correlation of the output {Zn} for time lag r ≥ 0
is

RZ(n+ r, n) ≜E[Zn+rZn] = Pr(Zn+r = 1, Zn = 1)

=
∑

j1,j2∈S1

Pr(Sn+r = j2, Sn = j1)

=
∑

j1,j2∈S1

Pr(Sn = j1)Pr(Sn+r = j2|Sn = j1)

=
∑

j1,j2∈S1

(p0H
neTj1)(ej1H

reTj2)

=p0H
nQHrqT , (13)

where q is given by (10) and Q ∈ RM×M is

Q ≜
∑
j1∈S1

eTj1ej1 = diag(q). (14)

The auto-covariance of the output {Zn} is calculated using
(9) and (13) as

CZ(n+ r, n) ≜ E
[
(Zn+r − E[Zn+r])(Zn − E[Zn])

]
= RZ(n+ r, n)− E[Zn+r]E[Zn]

= p0H
nQHrqT − p0H

n+rqT p0H
nqT . (15)

C. Cross-Correlation & Cross-Covariance

We recall that Zn and Sn depend only on {Xj
n}, j =

1, 2, . . . , k and not on their future values. Moreover, the
random variables of the input sequences {Xj

n} are assumed
to be independent to each other, since they originate from
different random number sources. To this end, we derive the
cross-correlation of the output {Zn} with the a single input
{Xn} as

RZX(n, n+r) ≜ E[ZnXn+r]=Pr(Zn = 1, Xn+r = 1) (16)

To proceed further, we distinguish cases for r,
• For r = 0,

RZX(n, n) =Pr(Zn = 1, Xn = 1)

=
∑
σ∈S

Pr(Zn = 1, Xn = 1, Sn−1 = σ)

=
∑
σ∈S,
σ1∈S1

Pr(Sn = σ1, Xn = 1, Sn−1 = σ)

=
∑
σ∈S,
σ1∈S1

Pr(Sn = σ1 | Xn = 1, Sn−1 = σ)

Pr(Xn = 1)Pr(Sn−1 = σ)

=p0H
n−1(H ◦ V )qTPr(Xn = 1), (17)
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where matrix H ◦ V is the point-wise (Hadamard) product
of H with V , where V ∈ {0, 1}M×M is such that vi, j = 1
if and only if the transition from the i-th to the j-th state is
done with Xn = 1.

• For r ≥ 1, since Zn and Xn+r are independent we have

RZX(n, n+ r) =Pr(Zn = 1)Pr(Xn+r = 1)

=p0H
nqTPr(Xn+r = 1). (18)

Summarizing,

RZX(n, n+ r) =

{
p0H

n−1(H ◦ V )qTPr(Xn = 1), r = 0

p0H
nqTPr(Xn+r = 1), r > 0

(19)

The cross-covariance between the output {Zn} and the input
{Xn} sequences

CZX(n, n+ r) = RZX(n, n+ r)− E[Zn]E[Xn+r], (20)

is derived directly from (9) and (19) and the definition X =
Pr(Xn = 1) giving

CZX(n, n+ r) =

{
Xp0H

n−1(H ◦ V −H)qT , r = 0

0, r > 0

(21)

D. Variance and Standard Deviation

The variance of Z̃N from (11) is calculated using the
expression (15) as follows

Var(Z̃N ) =E
[
(Z̃N − E[Z̃N ])2

]
=

1

N2

N∑
i,j=1

E
[
(Zi − E[Zi])(Zj − E[Zj ])

]
=

1

N2

N∑
i,j=1

CZ(i, j)

=
1

N2

 N∑
i=1

CZ(i, i) + 2

N∑
i>j

CZ(i, j)


=

1

N2

[
p0

N∑
i=1

HiQqT −
N∑
i=1

(
p0H

iqT
)2

+ 2

(
N−1∑
j=1

N∑
i=j+1

p0H
jQH(i−j)qT

−
N−1∑
j=1

N∑
i=j+1

(
p0H

iqT
) (

p0H
jqT
))]

, (22)

while the standard deviation is obtained as σZ̃N
=
√

Var(Z̃N ).

E. Error Analysis

To investigate the output accuracy of a SFSM, one can
calculate analytically the Mean Squared Error (MSE) between

the output’s mean value Z̃N and the actual value of the
computation Z̄. It is calculated as

MSE(Z̃N ) = E
[
(Z̃N − Z̄)2

]
= E

[
Z̃2
N − 2Z̃N Z̄ + Z̄2

]
= E

[
Z̃2
N

]
− 2E[Z̃N ]Z̄ + Z̄2

= Var(Z̃N ) + E[Z̃N ]2 − 2E[Z̃N ]Z̄ + Z̄2, (23)

where the analytical expressions (12) and (22) are used.

IV. REGISTER’S NUMBER OF STATES SELECTION

The registers utilized by the SCPBs are typically used to
store and ”remember” logic 1s based upon a counting process.
Ideally, with finite input sequence length and infinite number
of states, the counting is performed perfectly, i.e. without
loss of 1s. In practice, however, this is not feasible given
the register’s finite number of states; if they are too few, the
counting process results in overflows or underflows that may
degrade the output’s accuracy.

Consider the following scenario: starting from any initial
state of the register, e.g. T0 ∈ TR, the SCPB’s inputs are such
that they force Tn to perform a walk within states 0, . . . ,W−1.
Eventually, Tn will reach either of its saturating states W − 1
or 0 and may visit them repeatedly. This can cause overflows
or underflows given that states W−1 and 0 cannot be exceeded
to allow for further counting and correctly storing of logic 1s.
Therefore, it is important to investigate how the number of
states W are related to overflows/underflows and when this
impacts the accuracy of the output sequence.

A. SFSM Overflow/Underflow Modeling

To explain the modeling procedure of overflows/underflows,
consider the MC of Fig. 3 and suppose that its current state
Sn is M−1 (or 0). The overflows/underflows occur when and
only when the next combination of inputs at time index n+1,
force the MC’s state to return to itself, i.e. Sn+1 = Sn, where
it should transition to Sn+1 = Sn+1 or Sn+1 = Sn−1 instead.
However, states M and −1 do not exist and as expected,
the MC of Fig. 3 does not allow for overflows/underflows
to be modeled. Therefore, we modify it to the one shown in
Fig. 4 which contains two extra absorbing states Ma,Mb so
as to capture the overflows/underflows. Note that both states
Ma,Mb are used for modeling purposes only and do not imply
any change of the register’s states or size.

  

    

Fig. 4. Example of the Markov Chain overflow/underflow model with
absorbing states Ma,Mb corresponding to that of Fig. 3.

Based on the MC model of Fig. 4 one can calculate
the probability of overflows/underflows in states Ma,Mb.
First, the set of the MC’s states is defined as Ŝ ≜
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{0, 1, 2, ...,M − 1,Ma,Mb} and assuming a state order
(0, 1, 2, ...,M − 1,Ma,Mb) then the transition probability
matrix Ĥ ∈ [0, 1](M+2)×(M+2) is written as

Ĥ =



0 0 A4 . . . . . . 0 0 A2

A2 A3 A1 0 . . . 0 0 A4

0 A2 A3 A1 . . . 0 0 0
...

. . . . . . . . . . . .
...

...
...

0 . . . 0 A2 A3 A1 0 0
0 . . . . . . 0 A2 A3 A1 0
0 . . . . . . 0 0 0 1 0
0 . . . . . . 0 0 0 0 1


. (24)

The MC’s current state Ŝn probability distribution vector is

p̂Tn ≜



Pr(Ŝn = 0)

Pr(Ŝn = 1)
...

Pr(Ŝn = M − 1)

Pr(Ŝn = Ma)

Pr(Ŝn = Mb)


∈ [0, 1]M+2 (25)

and is calculated as

p̂n = p̂0Ĥ
n, (26)

with initial distribution vector

p̂0 = ei ∈ [0, 1]M+2. (27)

Considering the above, the probability that the MC has over-
flowed/underflowed by clock cycle n in states Ma and Mb

is Pr(Ŝn = Ma) and Pr(Ŝn = Mb) respectively and is
calculated as[

Pr(Ŝn = Ma), Pr(Ŝn = Mb)
]
=p̂0Ĥ

n[eTM+1, e
T
M+2]. (28)

B. Expected number of Steps before Overflows/Underflows
It is reasonable to further investigate the overflow/underflow

process, especially when the operation of the SFSM and
consequently that of the SCPB restrains their occurrence. For
this reason, we calculate the expected number of transitions
before the first overflow/underflow, i.e. before states Ma or
Mb are reached. We write matrix Ĥ in its canonical form
[29], [30] as

Ĥ =

[
H̃ R

02,M I2

]
, (29)

where H̃ ∈ [0, 1]M×M , R ∈ [0, 1]M×2, I2 ∈ [0, 1]2×2 and
02,M ∈ [0, 1]2×M . Using H̃ , the fundamental matrix of the
absorbing MC [29], [30] is calculated as

F = (IM − H̃)−1 ∈ RM×M . (30)

Considering that the initial state, S0, can be any within the
states S of the MC of Fig. 3, then the expected number of
transitions before the MC is absorbed is

N∗ = p0F1, (31)

where 1 ∈ RM is the column vector of all ones and p0
is given by (8). The potentially negative impact of over-
flows/underflows and the importance of N∗ in the register’s
state selection, is discussed in the following subsection.

C. Guidelines to select the number of states

According to the SCPB’s operation and the counting process
itself, an overflow/underflow does not always result in an
erroneous bit at the output. To give a better insight on this,
we consider two cases for a MC with a finite number of states
M :

• The MC’s current state Sn starts from the initial state
S0 = 0, transitions within S, and is allowed to tran-
sition to its saturating states, visiting them repeatedly
as well. Typically in SC, such MC describes the oper-
ation of a SFSM that approximates an asymptotically
bounded function and actually benefits from the over-
flows/underflows, for instance the stochastic tanh [10].

• The MC’s current state Sn starts from the initial state
S0 = 0, transitions within S , but, is not allowed to
repeatedly visit the last state, M−1 which is a saturating
one. Such MC describes the operation of a SFSM that
captures the bit-differences from the input sequences and
stores them cumulatively in a register, but, does not
benefit from overflows as they may result in erroneous
bits at the output sequence [20], [31].

From the above, it is reasonable for a SFSM to have the
number of its states carefully selected so as to limit the use of
registers taxing on the hardware resources. In this direction,
one can use the expression of N∗ in (31) as a guideline to
select M and hence the register’s size. First, one has to select
the stochastic sequence length N , the number of states M
and the input probabilities Xj = Pr(X

j
n = 1), j = 1, . . . , k.

Since N∗ is a function of the inputs and the number of states
M = 2w, a reasonable register’s size ŵ can be selected

ŵ=min
{
w ∈ N | min

(X1,...,Xk)
N∗(X1, . . . , Xk, 2w)≥N

}
.

(32)

V. MODELING EXAMPLES

In this section we show how the the proposed MC frame-
work can be applied to model in detail the statistical properties
of two SFSMs, selected from the SC literature. To demonstrate
our framework’s accurate modeling, we compare its results
with those obtained from the numerical calculations for 104

runs with i.i.d. inputs, all conducted using Matlab.

A. Modeling Example 1: Stochastic Tanh

Architecture: The first modeling example we consider is
the stochastic tanh function (STanh) introduced in [10]. Its
architecture is shown in Fig. 5, where {Xn} is the i.i.d. input
sequence and {Zn} is the output. If Xn = 1, then the w-bit
register’s current value Tn is increased by 1-bit, whereas in
the opposite case, i.e. Xn = 0, it is decreased by 1-bit.

The up & down counting of Tn occurs within TR ≜
{0, 1, . . . ,W − 1}, where W is the total number of states.
Here, the up & down counting is realized using a ripple
binary counter, able to count up to W = 2w states, where
w is the register’s size, but, note that it can also be realized
by a shift-register. The first and last states, 0 and W − 1,
are saturating, which means that they cannot be exceeded.
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Therefore, considering (2), with initial state T0 = W/2, Tn

is updated as

Tn = max
{
min

{
Tn−1 +Xn −Xn,W−1

}
, 0
}
.

The instantaneous value of the output Zn, is determined
by the state’s current value as Zn = Tn ≥ W/2. According
to the analysis in [10] and considering the above, for an
input X representing a stochastic number in bipolar format,
the configuration shown in Fig. 5 approximates the Tanh(·)
function as STanh(W,X) ≈ Tanh(XW/2).

Fig. 5. Architecture of the stochastic tanh function.

Markov Chain Modeling: The operation of the STanh archi-
tecture shown in Fig. 5 can be described by the MC model
of Fig. 6. Its states have an one-to-one correspondence with
the register’s ones and therefore the MC’s current value Sn

transitions within S = {0, 1, . . . ,M − 1}. The transition
probabilities are

A1 = Pr(Xn = 1)

A2 = Pr(Xn = 0) = 1− Pr(Xn = 1) (33)

and can be used to describe the transition probability matrix
H ∈ RM×M as

H =



A2 A1 0 . . . . . . 0
A2 0 A1 0 . . . 0
0 A2 0 A1 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 A2 0 A1

0 . . . . . . 0 A2 A1


. (34)

Assuming an initial distribution vector p0 = eM/2 ∈ RM , the
MC’s probability distribution vector pn is calculated using (7).

  

    

    

Fig. 6. Markov Chain model describing the operation of the stochastic tanh
function. Transition probabilities are given by (33).

First-Moment Statistics: Considering the MC model of Fig.
6, S can be separated into S0 = {0, . . . ,M/2− 1} and S1 =
{M/2, . . . ,M − 1}. Therefore, using (10), q is expressed as

q =

M∑
i=M/2+1

ei, (35)

allowing for E[Zn] and E[Z̃N ] to be calculated using (9) and
(12) respectively. A graphical representation of E[Z̃N ] approx-
imating the STanh function, is shown in Fig. 7 parameterized
with M = 4 states and N = 64-bit sequence length.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 7. Expected value of the stochastic tanh’s output mean E[Z̃N ] calculated
using (12), parameterized with M = 4 states and sequence length N = 64.
For the numerical calculations, 104 i.i.d. runs for each point are considered.

Second-Moment Statistics: To derive the second-moment
statistics, one can start from the calculation of the auto-
correlation RZ(n+ r, n) using (13). Note that Q ∈ RM×M is
obtained from (14), where the vector q is used from (35). Once
RZ(n+ r, n) is calculated, it can be used to derive the auto-
covarinace CZ(n + r, n) using (15). In Fig. 8, CZ(n + r, n)
is plotted, for M = 4 states, input sequence length N = 256
and two time lags r = 0, 1. As one can observe, CZ(n+ r, n)
peaks when X = 0 (bipolar format) and is reduced when the
delay is increased from 0 to 1 samples. The variance of the
output’s mean Var(Z̃N ) is calculated using (22). In Fig. 9 we
demonstrate this calculation using M = 4 states and input
sequence length N = 64.

Mean Squared Error: The MSE is calculated using (23), in
which Z̄ = Tanh(XM/2). The results are shown in Fig. 10
for M = 4 states and input sequence length N = 64.

Overflow/Underflow Modeling: The modeling of over-
flows/underflows is achieved using the MC model of Fig.
11, which contains the two absorbing states Ma,Mb. With
state ordering (0, 1, 2, ...,M − 1,Ma,Mb) and the transition
probabilities from (33), the transition probability matrix Ĥ ∈
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Fig. 8. Auto-Covariance CZ(n + r, n) of the stochastic tanh’s output
calculated using (15), parameterized with M = 4 states, sequence length
N = 256 and time lags r = 0, 1. For the numerical calculations, 104 i.i.d.
runs for each point are considered.
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Fig. 9. Variance Var(Z̃N ) of the stochastic tanh’s output mean calculated
using (22), parameterized with M = 4 states and sequence length N = 64.
For the numerical calculations, 104 i.i.d. runs for each point are considered.

R(M+2)×(M+2) becomes

Ĥ =



0 A1 0 . . . . . . 0 0 A2

A2 0 A1 0 . . . 0 0 0
0 A2 0 A1 . . . 0 0 0
...

. . . . . . . . . . . .
...

...
...

0 . . . 0 A2 0 A1 0 0
0 . . . . . . 0 A2 0 A1 0
0 . . . . . . 0 0 0 1 0
0 . . . . . . 0 0 0 0 1


. (36)

Using (36), the probability distribution vector p̂n is calculated
from the expression given in (26), where the initial distribution
vector is p̂0 = eM/2. In addition, Fig. 12 shows the probability
of overflow/underflow calculated using (28) for X = 0.5
(unipolar format), sequence length N = 64 and increasing
number of states M = 4, . . . , 32.

-1 -0.5 0 0.5 1

0

0.05

0.1

0.15

Fig. 10. Mean Squared Error of the stochastic tanh’s output mean calculated
using (23) for M = 4 states and input sequence length N = 64. For the
numerical calculations, 104 i.i.d. runs for each point are considered.

  

    

   

Fig. 11. Markov Chain overflow/underflow model of the stochastic tanh
function. Transition probabilities are given by (33).

Register’s size selection: The matrix Ĥ from (36) can be
used to derive the fundamental matrix F according to (30).
Then, the expected number of steps before overflows N∗ can
be calculated using (31), considering that p0 = eM/2 ∈ RM .
In Fig. 13, N∗ is plotted, parametrized with sequence length
N = 32 and state sizes M = 8, 16, 32. It can be observed
that the condition N∗ ≥ N from (32), is satisfied only when
M = 16, 32 states are used.

One can conclude that the advantage of modeling the
expected number of steps before overflows N∗ is twofold;
on the one hand, it allows to accurately select the number
of states that reduce the overflow/underflow occurrence, while
on the other it prevents from selecting an unnecessarily large
number of states, taxing on the hardware resources.

B. Modeling Example 2: Stochastic Adder

Architecture: The second modeling example we consider, is
the non-scaling adder introduced in [31]. Its architecture is
shown in Fig. 14, where {X1

n}, {X2
n} are i.i.d. input sequences

and {Zn} is the output. Its principle operation is based upon
the storing of logic ones in a w-bit register when X1

n = X2
n =

1 so as to output them in a future clock cycle n′ for which
X1

n′ = X2
n′ = 0. The register’s current value Tn, up and down

counts within TR = {0, 1, . . . ,W − 1}, where W = 2w is the
total number of states. Therefore, Tn’s accumulating behavior
is expressed as [31]

Tn = min
{
Tn−1 +X1

nX
2
n −

(
Tn−1>0

)
X

1

nX
2

n,W−1
}
.
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Fig. 12. Probability of overflow/underflow of the stochastic tanh calculated
using (28) for increasing number of states M = 4, . . . , 32, input X = 0.5
and sequence length N = 64.
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Fig. 13. Expected number of steps before overflows/underflows N∗ of the
stochastic tanh calculated using (32), for M = 8, 16, 32 states and sequence
length N = 32 (dashed line). The guideline N∗ ≥ N allows for reduced
overflow/underflow occurrence.

From the architecture of Fig. 14, the instantaneous output can
be described as Zn = X1

n+X2
n+Tn−1 > 0. Note that for the

architecture’s proper operation, it holds 0 ≤ X1 +X2 ≤ 1.

<

Fig. 14. Architecture of the stochastic adder [31].

Markov Chain Modeling: The MC model of Fig. 15 de-
scribes the operation of the adder’s architecture. Here, the
register’s initial value 0 is represented by two states in the
model, 0A and 0B , so as for its SFSM to be expressed as

a Moore one. Hence, its current state Sn transitions within
M + 1 values within S = {0A, 0B , 1, 2, ...,M − 1}, while its
transition probabilities are

A1 =Pr(X
1
n = 0)Pr(X

2
n = 0)

A2 =Pr(X
1
n = 1) + Pr(X

2
n = 1)− 2Pr(X

1
n = 1)Pr(X

2
n = 1)

A3 =Pr(X
1
n = 1)Pr(X

2
n = 1). (37)

They can be used to write the transition matrix H ∈
R(M+1)×(M+1) as

H =



A1 A2 A3 . . . . . . 0
A1 A2 A3 . . . . . . 0
0 A1 A2 A3 . . . 0
...

. . . . . . . . . . . .
...

...
. . . 0 A1 A2 A3

0 . . . . . . 0 A1 A2 +A3


. (38)

Since the MC’s initial state is S0 = 0A, here the initial
distribution vector is p0 = e1 ∈ RM+1 and thus the states’
probability distribution vector pn is calculated using (7) [31].

  

    

Fig. 15. Markov Chain model describing the operation of the stochastic adder.
Transition probabilities are given by (37).

First-Moment Statistics: Observing the MC model of Fig.
15, one can see that Sn = 0A ⇒ Zn = 0, separating S into
S0 = {0A} and S1 = {1, 2, . . . ,M − 1}. Therefore, vector
q = [0, 1, . . . , 1] ∈ RM+1 is expressed as

q =

M+1∑
i=2

ei, (39)

and can be used to calculate E[Zn] and E[Z̃N ] using (9) and
(12) respectively [31]. For two inputs X1, X2 ∈ [0, 1], the
expected value of the output’s mean is shown in Fig. 16,
parametrized with M = 8 states and N = 64-bit sequence
length. From Fig. 16, it can be seen that the distribution of
the output’s mean, E[Z̃N ], calculated using (12), matches the
one obtained from the numerical experiments, verifying also
the correctness of the additions for two inputs X1, X2 ∈ [0, 1],
such that 0 ≤ X1 +X2 ≤ 1.
Second-Moment Statistics: The auto-correlation RZ(n+r, n)
is calculated using (13), considering the vector q from (39) and
can be used to calculate CZ(n+r, n) from the expression (15).
The auto-covariance CZ(n+ r, n) is illustrated in Fig. 17, for
two inputs X1, X2 ∈ [0, 1], parametrized with M = 8 states,
input sequence length N = 64 and a delay r = 1. One can
observe that the auto-covariance peaks when X1 = X2 = 0.5
with a negligible value of approximately 0.03 and gradually
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Fig. 16. Expected value of the stochastic adder’s output mean E[Z̃N ]. Top:
calculated using (12), parametrized with M = 8 states and sequence length
N = 64. Bottom: Numerical calculations for 104 i.i.d. runs for each point.

decreases when moving away from these values. Notice that
the results obtained from the analytic calculation, follow the
ones from the numerical experiments.

Considering CZ(n + r, n), the variance of Z̃N , Var(Z̃N ),
can be calculated using the expression (22). In Fig. 18 it is
demonstrated for M = 8 states and input sequence length
N = 64. From Fig. 18, it is observed that the analytic
calculation of Var(Z̃N ) follows closely the one obtained from
the numerical experiments, where the results have values with
order of magnitude up to 10−3.
Mean Squared Error: The MSE of the adder’s output mean
can be calculated using (23), where Z̄ = X1+X2. In Fig. 19
the MSE is shown for M = 8 states, sequence length N = 64
and inputs X1, X2 ∈ [0, 1]. From Fig. 19, it is noticeable that
the analytic calculation of the MSE(Z̃N ) using (23) matches
the one obtained from the numerical experiments.
Overflow Modeling: The procedure to model overflows devi-
ates from the previous SFSM example. Here, we are interested
in ”how far” the MC’s current value Sn can transition, corre-
sponding to ”how many” additional logic 1s are stored from
the counting process. Therefore, the modeling of overflows
becomes one-sided, in the sense that only one absorbing state
is used, Ma. In Fig. 20, the adder’s MC overflow model is
shown.

With state ordering (0A, 0B , 1, . . . ,M − 1,Ma), the transi-
tion probability matrix Ĥ ∈ R(M+2)×(M+2) is written using

0

1
1

0.02

0.5

0.04

0.5

0 0

0

1
1

0.02

0.5

0.04

0.5

0 0

Fig. 17. Auto-Covariance CZ(n + r, n) of the stochastic adder’s output.
Top: Calculated using (15), parametrized with M = 8 states, sequence length
N = 64 and delay r = 1. Bottom: Numerical calculations for 104 i.i.d. runs
for each point.

the transition probabilities given in (37) as

Ĥ =



A1 A2 A3 . . . . . . . . . 0
A1 A2 A3 . . . . . . . . . 0
0 A1 A2 A3 . . . . . . 0

0
. . . . . . . . . . . . . . . 0

... . . . 0 A1 A2 A3 0

... . . . . . . 0 A1 A2 A3

0 . . . . . . . . . . . . 0 1


, (40)

and using p̂0 = e1 ∈ RM+2, the probability distribution
vector after N steps is calculated with the expression (26).
Considering that only one absorbing state is used, then the
probability of overflow is [31]

Pr(Sn = Ma) = p̂0Ĥ
neTM+2 (41)

In Fig. (21), the adder’s probability of overflow is graphically
illustrated, for inputs with values X1 = X2 = 0.5, increasing
number of states M = 4, . . . , 32 and sequence lengths N =
16, 32, 64, 256. As expected, an increase on the number of
states, reduces the probability of overflow.
Register’s size selection: For the calculation of the expected
number of steps before overflows N∗, the matrix Ĥ from (40)
is used along with the initial distribution vector p0 = e1 ∈
RM+1. In Fig. 22, N∗ is plotted for inputs X1 = X2 = 0.5,
increasing number of states M = 4, . . . , 32 and stochastic
sequence lengths N = 16, 32, 64, 128, 256.
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Fig. 18. Variance of the stochastic adder’s output mean Var(Z̃N ). Top:
calculated using (22), parametrized with M = 8 states and sequence length
N = 64. Bottom: Numerical calculations for 104 i.i.d. runs for each point.
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Fig. 19. Mean Squared Error of the stochastic adder’s output mean
MSE(Z̃N ). Top: calculated using (23), parametrized with M = 8 states and
input sequence length N = 64. Bottom: Numerical calculations for 104 i.i.d.
runs for each point.

  

    

Fig. 20. Markov Chain overflow model of the stochastic adder. Transition
probabilities are given by (37).
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Fig. 21. Probability of overflow of the stochastic adder calculated using (41),
for inputs X1 = X2 = 0.5, increasing number of states M = 4, . . . , 32
and increasing sequence lengths N .

It can be seen from Fig. 22 that for small values of N ,
namely N = 16, 32, a slight increase on the number of states,
for instance from M = 4 to M = 8, has negligible difference
on the condition to be satisfied, N∗ ≥ N . However, this is
not the case for large values of N , for instance N = 128
and more, in which an increase of the number of states (from
M = 4 to M = 8) and hence the register’s size (from 2-bit to
3-bit), is necessary to satisfy N∗ ≥ N .

C. Execution Time Performance

To highlight the time efficiency of our proposed framework
in the modeling of the SFSMs’ statistical properties, we
compare its execution times with those obtained from the
numerical experiments. For the STanh, we use 102 input values
uniformly distributed in [0, 1] and for the Stochastic Adder
we use 104 input values uniformly distributed in [0, 1]× [0, 1].
Regarding the numerical experiments, we conduct 104 and 105

runs with i.i.d input sequences of length N = 64-bits for each
input value we consider. To measure the relative performance
we use the speedup metric, which is the ratio of the execution
time of the numerical experiments, LN , over that of the
analytical modeling one, LM , i.e. Speedup = LN/LM. The
execution times are used to calculate the time saving metric
as (LN − LM )/LN ∗ 100%. We also cite the Mean Absolute
Error (MAE), which is the absolute difference between the
averaged output of the numerical experiments for 104 and 105
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Fig. 22. Expected number of steps before overflows N∗ of the stochastic
adder calculated using (32), for M = 4, . . . , 32 states, inputs X1 = X2 =
0.5 and increasing sequences lengths N . The guideline N∗ ≥ N allows for
reduced overflow occurrence.

runs and the analytical modeling output, summed over all the
uniformly distributed input values.

Table I, presents the numerical simulation and analytical
calculation execution times of the two SFSMs. When 105 runs
are used, it is observed that the calculation of the expected
value and the auto-correlation using the proposed framework,
result in substantial time savings for both the STanh, 99.47%
and 99.90% respectively, and the Stochastic Adder, 99.94%
and 99.96% respectively. With respect to the calculation of
the variance and the MSE, the analytical modeling of our pro-
posed method yields significant time savings, corresponding to
95.07% and 94.93% respectively for the STanh and 92.21%
and 91.91% respectively for the Stochastic Adder. Decreasing
the number of runs to 104, is expected to increase the MAE
and the execution time, at the cost however of reducing the
numerical experiments’ approximations.

VI. CONCLUSION

In this work a general methodology for the analytic cal-
culation of the statistical properties of Stochastic Comput-
ing Finite-State Machines was presented. It was shown that
expressing the behavior of any SFSM as a Moore one and
model it as a MC, makes the calculation of its first and second
moment statistics feasible using closed-form expressions, all
parametrized on the input sequence length and the number of
states. The proposed methodology was used in the detailed
modeling of two applicable SFSMs selected from the SC
literature. Comparisons of the proposed framework with the
numerical experiments, demonstrated its effectiveness in the
accurate modeling of the SFSMs’ statistical properties.
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TABLE I
EXECUTION TIMES (S) FOR THE MODELING OF TWO SFSMS: THE STANH

AND THE STOCHASTIC ADDER

STanh 104 runs
Numerical

Experiments(s)
Analytical

Modeling(s) Speedup MAE Time
Savings (%)

Exp. Value 4.41 0.24 18.37 1.1 × 10−3 94.55

Auto-Correlation 19.84 0.26 76.30 6.6 × 10−3 98.58

Variance 6.76 3.35 2.01 1.7 × 10−4 50.44

MSE 6.87 3.42 2.00 2.6 × 10−4 50.12

Stochastic Adder 104 runs

Exp. Value 303.80 1.62 187.5 5.1 × 10−4 99.46

Auto-Correlation 302.89 2.28 132.49 3.8 × 10−3 99.24

Variance 318.07 249.08 1.26 2.2 × 10−4 21.69

MSE 320.19 251.15 1.27 1.1 × 10−4 21.56

STanh 105 runs
Numerical

Experiments(s)
Analytical

Modeling(s) Speedup MAE Time
Savings (%)

Exp. Value 45.37 0.24 189.04 3.5 × 10−4 99.47

Auto-Correlation 270.85 0.26 1041.73 9.8 × 10−4 99.90

Variance 68.06 3.35 20.31 3.1 × 10−5 95.07

MSE 67.56 3.42 19.75 8.2 × 10−5 94.93

Stochastic Adder 105 runs

Exp. Value 3.09 × 103 1.62 1.91 × 103 1.6 × 10−4 99.94

Auto-Correlation 6.54 × 103 2.28 2.87 × 103 8.3 × 10−4 99.96

Variance 3.20 × 103 249.08 1.28 × 103 4.9 × 10−5 92.21

MSE 3.11 × 103 320.19 1.24 × 103 1.7 × 10−5 91.91

REFERENCES

[1] B. R. Gaines, Stochastic Computing Systems. Springer, Boston, MA,
1967.

[2] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1515 – 1531,
Aug. 2018.

[3] W. Qian, M. D. Riedel, H. Zhou, and J. Bruck, “Transforming probabil-
ities with combinational logic,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 9, pp. 1279 –
1292, Sep. 2011.

[4] W. J. Gross and V. C. Gaudet, Stochastic Computing: Techniques and
Applications. Springer, International Publishing, 2019.

[5] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
stochastic computation deterministically,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2925 –
2938, Dec. 2019.

[6] A. Alaghi and J. P. Hayes, “Strauss: Spectral transform use in stochastic
circuit synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 11, Nov. 2015.

[7] N. Temenos and P. P. Sotiriadis, “Deterministic finite state machines for
stochastic division in unipolar format,” in IEEE International Symposium
on Circuits and Systems (ISCAS), Seville, Spain, Oct. 2020.

[8] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of stochastic
computing neural networks for machine learning applications,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, pp.
2809 – 2824, Jul. 2021.

[9] A. Morro, V. Canals, A. Oliver, M. L. Alomar, F. Galán-Prado, P. J.
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